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Gene Expression Profiling to Predict Prognostic Biomarkers 

for Relapse in Multiple Myeloma 

Sana Elahi*, Sahar Fazal 

 

ackground: Multiple myeloma (MM), an incurable malignancy of plasma cells (PCs), is the second most 

common hematological cancer caused primarily by structural variations (chromosomal aberrations and 

somatic mutations). The majority of the patients acquired resistance against standard therapeutic 

approaches for MM and experienced relapse despite the continuous advances in MM therapies.  

Methods: We performed Differential Gene Expression (DGE), literature mining and SNV analysis of Next 

Generation Sequencing (NGS) data of Newly Diagnosed MM (NDMM) and Relapsed/Refractory MM (RRMM). 

The selected Differentially Expressed Genes (DEGs) were subjected to functional enrichment and pathway 

analysis. Immune cells infiltration analysis was also performed to estimate immune cells variations in the 

Tumor Microenvironment (TME) of RRMM.   

Result: CSF1R, VCAN, NRP1, COL22A1, BPI, BIRC5, MNX1, FAT1, ERG, TCL1A, AFF3 were selected after 

DGE, literature mining and SNV analysis. The functional enrichment of these DEGs showed significant 

enrichment for positive regulation of cell population proliferation, serene/threonine kinase activity, 

endothelial cell proliferation, cytokine binding, G protein activity and GDP binding, whereas KEGG pathway 

analysis revealed vital role of PI3K-Akt signaling pathway along with various cancer pathways. The immune 

cells infiltration analysis revealed the higher count of neutrophils and  lesser level of T cells (CD8+) in TME of 

RRMM.   

Conclusion: Our study suggests that neutrophils play an important role in modulation of TME in RRMM. The 

selected DEGs have previously been identified in progression, drug resistance and relapse of various cancers. 

The role of these biomarkers in RRMM has not been explored yet. Therefore, neutrophils, selected DEGs and 

PI3K-Akt signaling pathway are potential targets to investigate in RRMM. 
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Introduction 

MM is an incurable neoplastic malignancy of the fully 

differentiated B cells, PCs, which is characterized by 

aberrant division of PCs in Bone Marrow (BM) [1]. The 

uncontrolled division of monoclonal PCs leads to 

abnormal accumulation of non-functional 

immunoglobulins that result in anemia, hypercalcemia, 

renal dysfunction and lytic bone lesions [2]. MM is the 

second most prevalent hematological cancer, 

accounting for approximately 1% and 10% of all 

cancers and overall hematological neoplasms, 

respectively [3]. MM follows a multi-step process of 

pathogenesis initiating from precursor disorders i.e. 

Monoclonal Gammopathy of Undetermined 

Significance (MGUS) and smoldering myeloma that 

progresses to MM [2]. Chromosomal translocations of 

the IGH gene (14q32) reported in up to 50% of MM 

patients are most common and primary genomic 

events, which alter the expression of five oncogenes 

including CD1, FGFR3, CCND3, MAFB and MAF 

whereas MYC affecting translocations are reported in 

15-20% newly diagnosed cases of MM [4]. Common 

secondary genomic events are Copy Number Variations 

(CNV) (hyperdiploidy, chromosome-arm events, loss of 

chromosome 13 and miscellaneous chromosomal gains 

& losses) that can contribute significantly to MM 

progression by promoting genomic instability [5]. 

Previously, no mutational land scape has been specified 

for MM compared to other hematological disorders, 

despite the fact that 60 out of 250 recurrently mutated 

genes were found as driver genes in MM according to 

the Whole Genome Sequencing (WGS) and Whole 

Exome Sequencing (WXS) studies. KRAS, TP53, NRAS, 

DIS3, BRAF, FAM46C, TRAF3, EGR1, ROBO1, FAT3 and 

SP140 were presented as the most frequently mutated 

genes [6]. Many researchers suggested that the 

dysregulation of gene expression has been associated 

with the dysregulation of cancer pathways  [7]. These 

mutated genes are involved in different pathways such 

as MAPK pathway, DNA repair pathway, NF-kB 

pathway, RNA processing pathway, cell migration, 

adhesion, regulation of neurons, cell-cycle control 

pathway, B cell differentiation pathway, JAK-STAT 

pathway and PI3K pathway, most of which have been 

found dysregulated in MM [5].  Moreover, immune 

system of many MM patients has been observed 

dysfunctional i.e. low expression of tumor antigens and 

Human Leukocyte Antigen (HLA), presence of 

regulatory T cells (Tregs) and Myeloid-Derived 

Suppressor Cells (MDSCs), and enhanced expression of 

Programmed Cell Death Ligand 1 (PD-L1) [8]. 

Considering the crucial role of the immune system in 

MM, quantitative elucidation of the infiltrating 

immune cells in the TME can contribute significantly to 

the cancer treatment as it provides the information 

regarding the extent of immune evasion as well as 

cancer growth and progression [9]. 

The standard treatment options available for MM are 

combinatorial use of different classes of drugs, like 

proteasome inhibitors (bortezomib, carfilzomib and 

ixazomib), immunomodulatory drugs (thalidomide, 

lenalidomide, pomalidomide), alkylating agents, 

monoclonal antibodies (anti-cd38, elotuzumab), 

histone deacetylase inhibitors (panobinostat, 

vorinostat), corticosteroids, anthracyclines and 

autologous stem cells transplantation  [3]. Besides the 

availability of vast treatment options, the 5- year 

survival rate has been observed only in 54% patients 

and majority of the MM patients experience relapse 

eventually. The ultimate cause for the relapse in MM is 

still unknown, however drug resistance is believed to 

be one of the major causes [3]. The underlying 

mechanisms of cancer progression and drug resistance 

are still not understood completely as drug resistance 

itself is governed by multiple factors including genetic 

and epigenetic variations, abnormal drug transport and 

metabolism, persistence of cancer stem cells, 

dysfunctional TME, immunotherapy antigens and 

dysregulation of apoptosis. However, with the 

advancement in genomic technologies and integrated 

approaches, several new treatment approaches are 

being investigated that can be promising against cancer 

treatment [10]. The role of genetic heterogeneity in the 

development of resistance against all available 

treatments and relapse is very little known in the case 

of RRMM as compared to the NDMM. Previously, 

relapse specific DEGs, dysregulated proteins and drug 

resistance have been reported in acute myeloid 

leukemia (AML) employing RNA-seq, WGS and WES 

analysis [11]. Thus, these genomic and transcriptomics-

based methods can be useful to reveal novel biomarkers 

involved in acquisition of drug resistance and relapse in 

MM as well as the identification of novel onco-targets 

for drug development [12].  

This study aims at utilizing RNA-Seq, WXS and WGS 

data of “Clinical Outcomes in Multiple Myeloma to 

Personal Assessment of Genetic Profile” (CoMMpass) 

(https://portal.gdc.cancer.gov/projects) of Multiple 

Myeloma Research Foundation (MMRF) to identify 

novel biomarkers involved in the pathogenesis and 

aggressiveness of MM. These biomarkers were further 

investigated for their association with dysregulation of 

the biological pathways and TME that can be involved 

in progression, drug resistance and relapse in RRMM. 

Methods 

Data Collection 

This study utilized the WXS, WGS and RNA-Seq data of 

NDMM and RRMM patients. The RNA-Seq and variant 

data was retrieved from National Cancer Institute 
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Genomic Data Commons (NCI-GDC) data Portal 

utilizing the MMRF CoMMpass study data 

(https://portal.gdc.cancer.gov/projects.) GDC is a 

central repository, publicly available to access the vast 

amount of clinical and genomic data of numerous 

cancer studies. The MMRF CoMMpass dataset consists 

of WXS, WGS, RNA-Seq and clinical data of 995 MM 

patients primarily at the diagnosis and then at the 

relapse of cancer . 

Shortlisting of Candidate Relapse Biomarkers 

The genes were selected as candidate biomarkers if 

meeting any one of the following criteria 1) a gene 

retrieved as relapse biomarker in literature mining and 

also upregulated in DGE, 2) a gene carrying SNV and 

also upregulated in DGE, 3) Frequently mutated genes 

with higher no of SNVs.  

Immune Cells Infiltration 

The immune cells infiltration of the RRMM vs NDMM 

patients was carried out by utilizing the immunedeconv 

2.1.0 package in R 4.2.2 [13]. This method estimates the 

count of immune cells present in the samples by 

employing deconvolute functions. The gene expression 

matrix was normalized to obtain fragments per kilobase 

of transcript per million mapped reads (FPKM) using 

the count2FPKM function of RNAAgeCalc 1.10.0 

package  [14]. The FPKM normalized matrix was further 

subjected to deconvolution methods to perform 

immune cells infiltration. Here we utilized two 

deconvolution methods i.e., quanTIseq and 

MCPcounter, whereas the ggplot2 version 3.4.1 was 

used to visualize the results in the form of bar chart 

and dot plot  [13,15]. The quanTIseq utilizes bulk RNA-

seq data to estimate fraction of 10 immune cell types 

along with the uncharacterized cells. Whereas 

MCPcounter obtains transcriptomics data to provides 

the absolute count of immune and stromal cells across 

all samples with respect to each cell type individually.  

Literature Mining  

Literature mining was conducted to identify biomarkers 

involved in recurrence of multiple types of cancers 

using the search terminologies on Google Scholar 

(https://scholar.google.com)  and PubMed 

(https://pubmed.ncbi.nlm.nih.gov) as “recurrence in 

cancer”, “cancer relapse, “recurrent genes involved in 

lung cancer”, “recurrent genes involved in pancreatic 

cancer”, “recurrent genes involved in bladder cancer”, 

“recurrent genes involved in breast cancer”, “recurrent 

genes involved in colorectal cancer” and “recurrent 

genes involved in prostate cancer”. Furthermore, genes 

associated with relapse of MM were also identified 

through literature review using the terminologies 

“Relapse” “RRMM”, “cancer relapse” and “multiple 

myeloma” in Google Scholar and PubMed. Lastly the 

common genes obtained through literature mining and 

DGE was identified using grep tool on Linux.  

Differential Gene Expression 

Differential gene expression of RNA-seq data of 

CoMMpass was performed by using DESeq2 (1.38.3), an 

R (4.2.2) package [16]. This method normalizes the 

counts of each gene and employs shrinkage estimation 

resulting in more stable and explainable calculations 

focused on strength based quantitative analysis [16]. 

The DEGs were selected on the basis of log2 fold 

change (Log2FC) and p-value. Log2FC and p-value were 

set at the threshold of 2.0 < Log2FC < -2.0 and < 0.05, 

respectively to filter out up and downregulated DEGs. 

Furthermore, the EnhancedVolcano 1.16.0 package was 

used to retrieve EnhancedVolcano plot of DEGs  [17]. 

Function Enrichment 

Functional enrichment analysis of DEGs and shortlisted 

candidate biomarkers was performed by GeneCodis 4 

(https://genecodis.genyo.es/). GeneCodis 4 is an online 

enrichment analysis tool that extracts biological 

information from the experimental data by giving the 

statistical score for significantly enriched annotations 

[18].The lists of upregulated and downregulated genes 

were taken separately as input for annotations 

specified as Gene Ontology (GO) terms (biological 

process (BP), cellular component (CC), molecular 

function (MF)) and KEGG pathway. 

Results 

After applying the filter of “BM samples” and “non-

synonymous SNV” on MMRF- CoMMpass dataset 833 

patients were retrieved. Among them 753 were NDMM 

patients containing 2007 SNVs in 454 genes whereas 80 

were RRMM patients along with 226 SNVs affecting 152 

genes. The top 5 Missense SNVs maximum affecting 

cases in cohort of NDMM and RRMM were Q61R in 

NRAS (7.56%), Q61H in KRAS (6.72%), Q61K in NRAS 

(5.40%), V640E in BRAF (3.48%) and G12D in KRAS 

(3.36%).   

Identification of Immune Cells Fraction in MM Samples  

The results of immune cell infiltration analysis were 

assembled in Figure 1a and b. The meticulous analysis 

of results revealed that, T cell (CD4), natural killer cells 

(NK), monocytes, macrophages and myeloid dendritic 

cells (MDC) counts was marginally raised for RRMM in 

comparison to NDMM. Cytotoxicity score, endothelial 

cells and cancer associated fibroblasts (CAFs) can only 

be calculated through MCPcounter showed the similar 

trend of slightly higher count in RRMM as compared to 

NDMM. Similarly, regulatory T cell (Tregs) can only be 

estimated by quanTIseq was somewhat more in RRMM 

than NDMM. The only discrepancy was observed in the 
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count of B cells as it was more at RRMM than NDMM 

according to MCPcounter whereas it was higher in 

NDMM than RRMM according to quanTIseq. Moreover, 

T cell (CD8+) count declined, and Neutrophils count 

amplified in RRMM in comparison to NDMM according 

to both methods (Figure 1a and b). 

Figure 1: The immune cells infiltration analysis where (a) 
quanTIseq plot represents count of immune cells in NDMM and 
RRMM samples where samples are plotted on y-axis whereas x-
axis shows the fraction of cells (b) while MCPcounter plot 
represents immune cells content in baseline and recurrent 
cancer samples where x-axis represents scores for cell-type 
fractions whereas y-axis shows samples (c) Enhanced Volcano 
plot representing differentially expressed genes in RRMM 
(shown in red dots.) where biologically significant genes are 
plotted on x-axis w.r.t the Log2FC set at a cutoff of ± 2 whereas y-
axis depicts statistically significant genes w.r.t the P-value at a 
cutoff < 0.05). 

DGE Analysis  

The gene expression profiling of the BM samples of 

NDMM and RRMM patients revealed a total of 1562 

dysregulated genes. Among them 908 genes were 

significantly upregulated in RRMM (Log2FC > 2, p-

value < 0.05) whereas 654 genes were downregulated 

(Log2FC < -2, p-value < 0.05) as shown in Figure 1c. 

Furthermore, the top 10 upregulated and 

downregulated genes were filtered out on the basis of 

highest and lowest Log2FC values are assembled in 

Table 1. The top 10 significantly upregulated DEGs 

include ACTL8, NPTX1, MAGEA4, KLRF2, EGFLAM, 

UNC13C, GABRA5, NPFFR2, LINC01414, OR7E22P. 

Whereas the top10 significantly downregulated DEGs 

were FGFR3, SSTR1, RBM24, LINC03020, HAPLN1, 

PEG3, IRS4, SLITRK2, RNF128, AGR2. 

Genes P-value Log2FC Expression 

ACTL8 8.56E-10 3.951062 Overexpression 

NPTX1 7.67E-13 3.393056 Overexpression 

MAGEA4 0.000595 3.094468 Overexpression 

KLRF2 1.05E-06 3.010071 Overexpression 

EGFLAM 6.98E-10 2.82841 Overexpression 

UNC13C 2.50E-07 2.57908 Overexpression 

GABRA5 0.000478 2.553968 Overexpression 

NPFFR2 1.07E-05 2.516253 Overexpression 

LINC01414 4.89E-06 2.482189 Overexpression 

OR7E22P 3.47E-08 2.418929 Overexpression 

FGFR3 2.49E-84 -8.74914 Underexpression 

SSTR1 8.23E-07 -3.77321 Underexpression 

RBM24 2.92E-08 -3.68247 Underexpression 

LINC03020 1.42E-07 -3.58844 Underexpression 

HAPLN1 8.11E-12 -3.58337 Underexpression 

PEG3 4.68E-18 -3.55825 Underexpression 

IRS4 4.83E-07 -3.27126 Underexpression 

SLITRK2 2.35E-08 -3.16896 Underexpression 

RNF128 5.26E-12 -3.11795 Underexpression 

AGR2 2.63E-17 -2.95198 Underexpression 

Table 1: Top 10 significantly upregulated and downregulated 
DEGs retrieved through differential gene expression profiling of 
the BM samples of NDMM and RRMM.   

Literature Mining 

Literature mining retrieved 136 genes with significant 

role in relapse of various cancers as shown in Table 2. 

Among them 40 genes were found to be involved in 

RRMM (Table 2). Analysis of results revealed that 

KRAS, NRAS, TP53, NF1, STK11 and DNMT3A that 

were found as relapse biomarker in MM also reported 

for relapse in other cancers. Although these biomarkers 

were not found to be upregulated in our DGE analysis 

but mutations in these gene is reported by various 

research in RRMM. 

Bladder Cancer 

FGFR3, NEB, FGFR1, SDHC, OGG1, TP53, MDM2, p53, 

PSCA, p16, Ki67, IFT140,UBE2I, FAHD1, NME3, EOMES, 

HOXA9, POU4F2, TWIST1,VIM, ZNF154 

Breast Cancer 

STAT3, ES41, FANCD2, FOX1, ARID1A, NF1, ARID1B, 

BRCA1, PIK3R1, AKT1, TP53, ESR1-CCDC170, SEC16A-

NOTCH1, SEC22B-NOTCH2, ESR1-YAP1, FGFR1, ESR1, 

PTEN, ABCB1, BARD1, BRCA2, HER3 

Colorectal Cancer 

LEMD1, SERPINE1, SIAE, SERP2, EFEMP2, FBN1, 

SPARC, LINC0219, CC2D1B, PCDHB15, CSF1R, ATM, 

C11ORF65, APC, TP53, KRAS, PIK3CA, FBXW7, SMAD4, 

TCF7L2, NRAS, ADAM8, LYN, S100A9, VCAN 

Leukemia 

 

GAS6, PSD3, PLCB4, DEXI, JMY, NRP1, C10orf55, 

NCOR2, USH2A, NT5C2, DNMT3A, RUNX1, ASXL1, 

TP53, GTF2I–PDGFRB, IKZF1–TYW1, ARID1A, CSF1R, 

IKZF1, KANSL1, NIPBL, ARID1B, BCORL1, CREBBP, 

NRAS, PTPN11, FLT3, HOXA7, S100A11, S100A10, 

IFI44L, WT1 

Lung Cancer 

ATR,ERBB3, KDR, MUC6, GOPC-ROS1, NTRK1-SH2D2A, 

TTN, MUC16, CSMD3, RYR2, LRP1B, ZFHX4, USH2A, 

KRAS, FLG, TP53, SLC8A1, AHNAK, KCNU1, COLA5A2, 

COL22A1, PKHD1L1, SMARCA4 

Pancreatic Cancer 

KRAS, CDKN2A, TP53, SMAD4, ARID1B, NF1, PPP6C, 

AKT1, PIK3CA, CHD8, STK11, MGA, NOTCH1, MYC, 

NUTD15, BPI, C6orf58, CD177, MCM7, NUDT15 

Prostate Cancer 

BCL-2, C-MYC, CAVEOLIN, SLC14A1, NDUFA13, 

UQCR11, USP34, TP53, BIRC5, BCR-ABL1, BRCA1, 

BRCA2, PTEN, RB1, MYC 

Multiple 

Myeloma 

BFL-1, BCL-XL, BCL-2, KRAS, NRAS, TP53, FAM46C, 

TRAF2, LTB, FAM154B, NF1, XBP1, IDH2, GNAQ, PMS1, 

CREB1, NSUNS2, PIK3CG, ROS1, PMS2, FIT4, KDM5A, 

STK11, ZFHX3, CD40, TNFRSF17, IL6ST, PRKCD, IRF4, 

TRAF3, NFKB2, FGFR3, DNMT3A, SETD2, DIS3, IGLL5, 

KMT2B, SP140, MALRD1, L1TD1 

Table 2: Biomarkers associated with relapse in Multiple 
Myeloma and various other cancers identified using literature 
mining from Google Scholar and PubMed. 
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Shortlisting of Candidate Genes  

Genes were shortlisted on the basis of following criteria 

1) a gene retrieved as relapse biomarker in literature 

mining and also upregulated in DGE, 2) a gene carrying 

SNV and also upregulated in DGE, 3) Top mutated 

genes retrieved through SNV analysis. According to 

first criteria 6 DEGs were shortlisted including Colony-

Stimulating Factor-1 Receptor (CSF1R), VCAN, 

Neuropilin 1(NRP1), Collagen Type XXII Alpha 1 Chain 

(COL22A1), Bactericidal Permeability Increasing 

Protein (BPI) and Baculoviral inhibitor of apoptosis 

repeat-containing 5 (BIRC5). These DEGs were 

upregulated in our analysis but reported as relapse 

biomarkers for other cancers (Table 3) in literature. 

Similarly, 5 DEGs were selected in accordance with 

second criteria included Motor Neuron and Pancreas 

Homeobox 1 (MNX1), FAT Atypical Cadherin 1 (FAT1) 

ETS Transcription Factor ERG (ERG), TCL1 Family AKT 

Coactivator A (TCL1A) and ALF Transcription 

Elongation Factor 3 (AFF3) (Table 3). These DEGs 

showed upregulation along with SNV in RRMM 

patients. These DEGs are reported as diagnostics, 

prognostics, therapeutic and relapse biomarkers for 

various other cancers but their role in relapse of MM 

needs to be explored.   Moreover, two genes (KRAS, 

NRAS) were selected according to third criteria 

although, didn’t show any significant DE at relapse but 

harbor multiple SNVs in both NDMM and RRMM 

patients (Table 3).  

Criteria No. Gene Name Reason 

1 (upregulated DEGs 

in RRMM retrieved 

as relapse 

biomarkers in other 

cancers) 

CSF1R Colorectal + leukemia 

VCAN Colorectal Cancer 

NRP1 Leukemia 

COL22A1 Lung Cancer 

BPI Pancreatic Cancer 

BIRC5 Prostate Cancer 

2 (upregulated DEGs 

in RRMM having  

SNV) 

MNX1 P392L 

FAT1 N3716K 

ERG E353Q 

TCL1A T38I 

AFF3 P1129L 

3 (Top mutated 

genes retrieved 

through SNV 

analysis) 

KRAS 

Q61H, Q61R, G13D, G12V, 

G12R, Q61E, K117N, A59E, 

G12D 

NRAS 
Q61R, Q61K, Y64D, Q61H, 

G13R, G13D, E153Q, G12D 

Table 3: Candidate Relapse Biomarkers Shortlisted through 
Various Criteria. 

Functional Enrichment and Pathway Analysis of DEGs 

and Shortlisted Candidate Relapse Biomarker 

The GO term analysis of DEGs revealed that 

upregulated DEGs were found to be significantly 

enriched in the following BP, immune response, 

immune system process, inflammatory response, cell 

adhesion, positive regulation of T cell activation, 

antigen processing and presentation of peptides, 

peptide antigen assembly with MHC class II, 

immunoglobulin production, antigen processing and 

presentation of exogenous peptides and neutrophil 

chemotaxis. However, the downregulated DEGs were 

notably associated with adaptive immune response, 

positive regulation of B cell activation, phagocytosis 

recognition and engulfment, complement activation 

and development of central nervous system among 

many others. Similarly, the significant CC terms for 

upregulated DEGs were plasma membrane, 

extracellular region and extracellular space whereas, 

collagen-containing extracellular matrix, external side 

of plasma membrane, tertiary granule membrane, cell 

surface, ficolin-1-rich granule lumen and MHC class II 

protein complex were also notable terminologies. 

However, the downregulated DEGs were also enriched 

in plasma membrane, extracellular region and 

extracellular space, collagen-containing extracellular 

matrix, external side of plasma membrane along with 

immunoglobulin complex, synapses, and glutamatergic 

synapse. Additionally, the significant MF retrieved for 

the upregulated DEGs through GO analysis were 

carbohydrate binding, signaling receptor activity, 

transmembrane signaling receptor activity and 

cytokine activity. While the antigen binding, sequence-

specific DNA binding was the most significant MF 

related to downregulated DEGs among many others. 

The pathway analysis of DEGs revealed their 

enrichment in various essential pathways (Figure 2). 

The upregulated DEGs were found significantly 

enriched in numerous disease pathways including 

staphylococcus aureus infection, rheumatoid arthritis, 

malaria, Tuberculosis, asthma, leishmaniasis, graft 

versus host disease along with phagosome and 

hematopoietic cell lineage (Figure 2a). The 

downregulated DEGs, on the other hand, were found to 

be enriched in diverse signaling pathways including 

cAMP signaling, calcium signaling, hippo signaling, 

signaling pathways regulating pluripotency of stem 

cells along with Neuroactive ligand-receptor 

interaction and various synapses as depicted in Figure 

2b. 

Furthermore, the functional enrichment of these 

shortlisted candidate genes showed significant 

enrichment of the following BP ontologies,  positive 

regulation of cell population proliferation, 

multicellular organism development, positive 

regulation of serene/threonine kinase activity and 

positive regulation of endothelial cell proliferation 

more significant among many others. The shortlisted 

DEGs showed CC enrichment more significantly in 

focal adhesion whereas, G protein activity, GDP-

binding and cytokine binding were enriched MF. 

Moreover, KEGG pathways analysis revealed significant 

enrichment in prostate cancer, colorectal cancer (CRC), 

acute myeloid leukemia, chemical carcinogenesis 
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receptor activation and PI3K/AKT signaling pathway 

(Figure 2c).  

 
Figure 2: Figure illustrates the pathways analysis of DEGs (a) 
KEGG pathways analysis of upregulated DEGs in RRMM (b) KEGG 
pathways analysis of downregulated DEGs in RRMM (c) The 
KEGG pathways analysis of shortlisted DEGs. 

Discussion 

The relapse in MM is a constant concern for researchers 

because of complex multifactorial onset, prognosis and 

even more intricate recurrence of cancer. Development 

of effective treatment regimen to minimize relapse and 

maximize progression free survival of MM patients is 

conditional with the hunt of new biomarkers for 

diagnosis, prognosis and relapse along with efficient 

and precise drug targets and compounds. Literature 

review of six genes (CSF1R, VCAN, NRP1, COL22A1, 

BPI and BIRC5) identified by combine analysis of 

literature mining and DGE revealed their potential in 

modulating TME and disease progression. CSF1R, a 

receptor tyrosine kinase, inhibition is reported as 

potential antitumor strategy. Activated CSF1R are 

recruited by tumor-associated macrophages and release 

cytokine that modulated TME to protumoral 

phenotype. CSF1R activation also initiates many 

downstream pro survivals signaling cascades including 

PI3K/AKT, ERK1/2, and JNK [19]. Similarly, BIRC5 is 

also an immune-related gene that inhibits apoptosis 

and promotes cellular proliferation. High expression of 

BIRC5 regulates DNA methylation hence is reported as 

potential target for developing immunotherapies [20]. 

Moreover, NRP1 is an independent predictor of relapse 

and poor survival in non-small cell lung cancer 

(NSCLC). It is also reported as novel potential 

therapeutic target in NSCLC because of its critical role 

in tumorigenesis, cancer invasion, and angiogenesis 

through VEGF, PI3K, and Akt pathways [21]. Whereas 

VCAN and COL22A1 are reported as prognostic 

biomarkers in various cancers. VCAN mRNAs are 

specifically expressed in cancer-associated fibroblasts 

and associated with poor relapse free survival of stage 

II-III patients in CRC. It is a promising biomarker to 

identify stage II-III patients with high risk of relapse in 

CRC [22]. While COL22A1 is an integral part of novel 

prognostic immune related gene signature in CRC [23]. 

Additionally, COL22A1 is also reported as poor 

prognosis and relapse biomarker in Head and neck 

squamous cell carcinoma (HNSCC)   [24]. Furthermore, 

BPI is associated with human neutrophil as in response 

to inflammation neutrophils secrets BPI along with 

many other cytotoxic proteins and  can promote tumor 

metastasis by the formation of so-called neutrophil 

extracellular traps (NETs).  

High levels of circulating and intratumoral neutrophils 

have been shown to correlate with poor survival in 

pancreatic cancer and pancreatic ductal 

adenocarcinoma [25]. These results were also 

consistent with our immune cell infiltration analysis 

which revealed the presences of higher neutrophils 

count in RRMM. The immune cells infiltration analysis 

in our study corroborated the previously reported role 

of immune dysfunction in MM invasion and 

progression [19]. Development of effective therapeutic 

strategies against neutrophils for treating cancer and 

various other diseases has already been in 

consideration. According to recent studies neutrophils 

have multiple phenotypes that perform diverse 

functions, particularly modulation of inflammation and 

immune response [26]. Similarly, another study 

mentioned the impairment of immune response in MM 

due to reduced phagocytic activity of neutrophils in 

comparison to healthy control [27]. Moreover, the role 

of neutrophils in facilitating tumor progression 

through immune deregulation and increased 

vulnerability to infection in MUGS and MM has already 

been established [28]. CD8+ T cells count was found to 

be decreased in NDMM, are imperative for immune 

defense against intracellular pathogens (viruses, 

bacteria) and for tumor surveillance. The trafficking or 

transporting of CD8+ T cells into the TME is crucial to 

exert its anti-tumor function. The elevated levels of 

CD8+ T cells in the TME are linked with positive anti-

tumor effects and good prognosis in breast, colorectal, 

glioblastoma, and cervical cancers [29]. Hence the 

lower count of CD8+ T in TME is not only linked with 

cancer progression/relapse or poor prognosis but also 

with the increased risk of secondary viral or bacterial 

infection. The lower count of CD8+ T cells retrieved 

through immune infiltration investigation also 

supports our findings of pathway analysis which 

showed enrichment of various other cancer and 

bacterial infections pathways in RRMM (Figure 2). 

The DGE and SNV analysis of dataset retrieved five 

genes (MNX1, FAT1, ERG, TCL1A, AFF3) harboring 
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mutation and upregulation in RRMM. These mutations 

include MNX1 (P392L), FAT1 (N3716K), ERG (E353Q), 

TCL1A (T38I), and AFF3 (P1129L).  KRAS and NRAS, 

although not found in DGE but are the most mutated 

genes in both NDMM and RRMM patients according to 

SNV data. Both KRAS and NRAS are proto-onco genes, 

belonging to the Ras family of proteins, small GTPase, 

involved in regulation of biological processes 

particularly cell growth, proliferation and apoptosis  

[30]. It has been reported that newly acquired 

mutations and pre-treatment sub-clonal mutations of 

KRAS and NRAS in MM possibly induce chemo 

resistance and relapse [31]. Mutation in KRAS and 

NRAS have been reported to be more common in 

relapsed patients (>70% patients) [32,33]. The codons 

G12, Q61 and G13 are mutation hotspots for both KRAS 

and NRAS but various substitutions in each codon elicit 

different signaling pathway, hence express distinct 

pathophysiology [34]. In our study all the three 

hotspots were found substituted with various codon 

(NRAS: Q61H, Q61R, Q61E, G12V, G12D, G12R, G13D 

KRAS: Q61K, Q61H, G12D, G13R, G13D) along with few 

new codons (NRAS: K117N, A59E KRAS: Y64D, E153Q) 

in RRMM. The impairment of PI3K pathway due to 

KRAS (G12R) mutation is reported in literature [35] and 

is also consistent with our results of pathway analysis 

(Figure 4).  Additionally, MNX1 encodes a transcription 

factor (HB9) that contains a homeodomain. The 

overexpression of MNX1 has been reported in many 

cancers (prostate, colon, liver, breast and bladder 

cancer, glioma and pancreatic progenitor tumors and 

acute myeloid leukemia) and has been suggested as 

potential diagnostic and prognostic biomarker [36, 37]. 

Upregulation of MNX1 stimulates the Wnt/β‐catenin 

signaling and via expression of downstream genes 

c‐Myc and CCND1, hence plays a vital role in CRC 

progression [38].  FAT1 is among the most frequently 

mutated genes in many types of cancer.  The role of 

FAT1 in cancer progression is highly dependent upon 

cancer type. In some cancers epithelial-mesenchymal 

transition (EMT) and the formation of cancer 

initiation/stem-like cells is promoted by loss of FAT1 

function promotes whereas overexpression of FAT1 

leads to EMT in others. The paired analysis of diagnosis 

and relapse sample in B-cell acute lymphoblastic 

leukemia overexpression of FAT1 was found correlated 

with shorter relapse-free and overall survival [39]. 

Several studies have reported a correlation of FAT1 

mutation or expression with prognosis in various 

cancers, such as breast cancer, NSCLC, gastric cancer 

and T-cell lymphoma [40].  Positive correlation of FAT1 

overexpression with proliferation and WNT/β‐catenin 

signaling pathway in T-cell acute leukemia (T-ALL) is 

recently reported in a study [41]. ERG encodes a 

transcription factor involved in development and 

differentiation affecting vasculogenesis, 

haematopoiesis, angiogenesis and embryogenesis, and 

is associated with regulation of cellular processes  [42]. 

ERG over expression is associated with poor prognosis 

and oncogenesis promotion, in prostate cancer, 

Ewing’s sarcoma, acute myeloid leukemia, acute T-

lymphoblastic leukemia [43]. ERG high expression 

stimulates gene fusion event (ERG-TMPRSS2) that 

leads to early relapse in AML [43]. ERG upregulation is 

associated with upregulation of PI3K/AKT pathway 

[44]. TCL1A is a proto-oncogene expressed in 

embryonic stem cells, activated T and B lymphocytes 

and coactivator of kinases and interacting partners 

crucial in signaling pathways (PI3K and NF-κB) and 

cellular activities  [45]. Dysregulated TCL1A has a well-

documented role in hematopoietic malignancies i.e., 

development of T-cell leukemia, correlation of 

overexpression with aggressiveness, deregulation of 

the cell cycle and genomic instability in chronic 

lymphocytic leukemia [46]. It is also suggested as 

prognostic biomarker for stage II/III CRC [47], 

therefore, proposed as potential biomarker for 

colorectal and hematological malignancies [45, 47]. 

AFF3 is primarily expressed in B cells and encodes a 

protein involved in transcription regulation [48]. AFF3 

upregulation has been found in many cancers (gastric, 

breast, Adrenocortical and AML), also involved in 

modulating TME thus suggested as target for immune 

therapy [48-50]. In gastric cancer, dysregulated AFF3 is 

a potential marker for diagnosis and prognosis as well 

as correlated with immune checkpoints response 

whereas in breast cancer  overexpression is associated 

with drug (tamoxifen) resistance therefore suggested as  

predictive marker for ER+ breast cancer [48, 50]. 

Moreover, AFF3 meditates oncogenic effects of β-

catenin as constitutive activation of Wnt/β-catenin 

signaling pathway in mice leads to formation of 

malignant adrenocortical tumors [51].  

The functional enrichment analysis of all shortlisted 

genes revealed their significant enrichment in G 

protein activity, GDP binding, positive regulation of 

cell population proliferation, serene/threonine kinase 

activity, endothelial cell proliferation. However, 

pathway enrichment for PI3K-Akt signaling and 

prostate cancer, acute myeloid leukemia and CRC 

pathways along with many cancer pathways was also 

significant (Figure 2). It can be inferred that KRAS and 

NRAS mutants may affect the activation and hydrolysis 

due to dysregulation of G protein activity, GDP and 

GTP binding, and GTPase activity. The aberrant GTPase 

activity due to KRAS mutations has been reported to 

affect the GTP-hydrolysis [52]. Furthermore, 

enrichment of PI3K-Akt signaling pathway was also 

consistent with our other results as upregulation of 

CSF1R, NRP1, TCL1A and ERG activate PI3K-Akt 
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signaling [5, 44].  This pathway is crucial to many 

cellular processes and plays a significant role in cancer 

proliferation and multidrug resistance. Decrease in 

cellular apoptosis is mediated by continuous 

phosphorylation of various transcription factors by 

AKT, thus the promotion of the proliferation, 

angiogenesis, and survival of cell [53]. However, the 

PI3K-Akt signaling pathway is crucial for 

pathophysiology of MM and is associated with therapy 

resistance  [54, 55]. Moreover, Wnt/β‐catenin signaling 

plays a dual and disease stage-specific role in the 

pathogenesis of MM. Wnt/β‐catenin pathway activation 

during MM disease progression is mediated through 

epigenetic silencing by antagonists which facilitates 

pathway activation and proliferation of MM cells [56]. 

The pathway although not found enriched in pathway 

analysis but the 3 DEGs (MNX1, AFF3, and FAT1) 

among the 5 selected candidate genes are found to 

have direct relationship in upregulation of wnt/ 

β‐catenin pathway [38, 51]. This study proposed that 

upregulation of the following genes (CSF1R, VCAN, 

NRP1, COL22A1, BPI,  BIRC5, MNX1, FAT1, ERG, 

TCL1A, AFF3) might be the cause of drug resistance 

and relapse in RRMM. These genes exert their effect by 

modulating apoptosis, TME and PI3K-Akt signaling 

pathway mainly along with various other pathways. 

Their role as potential biomarker for diagnosis, 

prognosis and drug resistance in various cancers has 

also been reported. Thorough investigation on role of 

these genes in drug resistance might be helpful in 

understanding the mechanism of relapse in MM.  

Furthermore, the neutrophils, P13K-Akt signaling 

pathway along with aforementioned genes are 

potential biomarkers of relapse in MM and targets of 

new effective treatment regimens.   
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